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Steering Customized Al Architectures for HPC Scientific Applications
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Abstract. Al hardware technologies have revolutionized computational sensor

science. While they have been mostly used to accelerate deep learning
training and inference models for machine learning, HPC scientific ap-
plications do not seem to directly benefit from these specific hardware
features unless Al-based components are introduced into their simula-
tion workflows, for instance, as a replacement of their numerical solvers.
This paper proposes to take another direction in an attempt to democ-
ratize customized Al architectures for HPC scientific computing. The
main idea consi in demonstrating how legacy applications can lever-
age these AI engines after a necessary algorithmic redesign. It is crit-
ical that the resulting software implementations map onto the under-
lying memory-austere hardware architectures to extract the expected
performance. To facilitate this process, we promote the matricization
technique for restructuring codes (1) by exploiting data sparsity via al-
gebraic compression and (2) by expressing the critical computational
phases in terms of tile low-rank matrix-vector multiplications (TLR- = = =
MVM) and batch matrix-matrix multiplications (batch GEMM). Alge- S e I Sm I C Re d atu m I n
braic compression enables to reduce memory footprint and to fit into
small local cache/memory, while batch execution ensures high occupancy.
We highlight how we can steer the Graphcore Al-focused Wafer-on-Wafer
Intelligence Processing Units (IPUs) to deliver high performance for both
operations. We conduct a performance benchmarking campaign of these
two matrix operations that account for most of the elapsed times of four
real applications in computational astronomy, seismic imaging, wireless
communications, and climate/weather predictions. We report bandwidth
and execution rates with speedup factors up to 150X /14X /25X /40X, re-
spectively, on IPUs compared to other systems.




Tile Low-Rank Matrix-Vector Multiplication

Fig. 1: Dense MVM.



Hardware Settings

Vendor _Intel AMD _Fujitsu __NEC NVIDIA Graphcore
Family Cascade EPYC Primergy SX-Aurora Ampere IPU
Lake Milan AB64FX TSUBASA GPU
Model 6248 7713 FX1000 B300-8 A100 Bow
Node(s)/Card(s) 1 1 16 8 1 1
Socket(s) 2 2 4 N/A N/A 1
Cores 40 128 48 8 6912 1472
GHz 2.5 2.0 2.2 1.6 2.6 1.85
Memory 384GB DDR4 | 512GB DDR4 32GB HBM 48GB HBM2 [40GB HBMZ2e 3.6GB
Sustained BW 232GB/s 330GB/s 800GB/s 1.5TB/s 1.5TB/s 261TB/s
LLC 27.5MB 512MB 32MB 16MB 40MB N/A
Sustained BW 1.1TB/s ATB/s 3.6TB/s 2.1TB/s 4.8TB/s
Compiler Intel 19.1.0 GCC 7.5.0 Fujitsu 4.5.0 NEC 3.1.1 NVCC 11.0 |POPLAR 2.6
BLAS library Intel MKL 2020 BLIS 3.0.0 Fujitsu SSL II |NEC NLC 2.1.0 | cuBLAS 11.0 N/A
MPI library OpenMPI 4.0.3 |OpenMPI 3.1.2 Fujitsu MPI 4.0.1]JNEC MPI 2.13.0f NCCL 2.0 N/A
x86 - ARM - Vector GPU
MPI + OpenMP CUDA




Performance Results for Astronomy
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Performance Results for Seismic Processing
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Scaling up on Cerebras CS-2 Wafer Scale (GB23 Finalist)

Scaling the “Memory Wall” for Multi-Dimensional Seismic
Processing with Algebraic Compression on Cerebras CS-2
Systems
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We exploit the high memory bandwidth of Al-customized Cerebras
CS-2 systems for seismic processing. By leveraging low-rank matrix
approximation, we fit memory-hungry seismic applications onto
memory-austere SRAM wafer-scale hardware, thus addressing a
challenge arising in many wave-equation-based algorithms that
rely on Multi-Dimensional Convolution (MDC) operators. Exploit-
ing sparsity inherent in seismic data in the frequency domain, we
implement embarrassingly parallel tile low-rank matrix-vector mul-
tiplications (TLR-MVM), which account for most of the elapsed time
in MDC operations, to successfully solve the Multi-Dimensional
Deconvolution (MDD) inverse problem. By reducing memeory foot-
print along with arithmetic complexity, we fit a standard seismic
benchmark dataset into the small local memories of Cerebras pro-
cessing elements. Deploying TLR-MVM execution onto 48 CS-2
systems in support of MDD gives a sustained memory bandwidth
of 92.58PB/s on 35, 784, 000 processing elements, a significant mile-
stone that highlights the capabilities of AlI-customized architectures
to enable a new generation of seismic algorithms that will empower
multiple technologies of our low-carbon future.

https://doi.org/10.1145/3581784.3627042

1 JUSTIFICATION FOR THE GORDON BELL
PRIZE

High-performance matrix-vector multiplication using low-rank
approximation. Memory layout optimizations and batched exe-
cutions on massively parallel Cerebras CS-2 systems. Leveraging
Al-customized hardware capabilities for seismic applications for
a low-carbon future. Application-worthy accuracy (FP32) with a
sustained bandwidth of 92.58PB/s (for 48 CS-2s) would constitute
the second-highest throughput from June’23 Top500.

2 PERFORMANCE ATTRIBUTES

Performance Attributes Our submission

Broadband 3D seismic dataset
(~ 20k sources and receivers
and frequencies up to 50Hz)
Sustained bandwidth

Problem Size

Category of achievement

Figure 1: Schematic representation of the Multi-

1 D luti bl A red star indicates
!he source, a green triangle refers to the receiver, and the
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48 Cerebras CS-2 systems, i.e.,
35,784,000 processing elements



Scaling up on Cerebras CS-2 Wafer Scale (GB23 Finalist)
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