Example Programs
Use a local copy of the model zoo
Make a local copy of the Cerebras modelzoo and anl_shared repository, if not previously done, as follows.
mkdir ~/R1.5
cp -r /software/cerebras/model_zoo/modelzoo/ ~/R1.5/modelzoo
cp -r /software/cerebras/model_zoo/anl_shared/ ~/R1.5/anl_shared
Unet
An implementation of this: U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger et. al 2015
To run Unet with the Severstal: Steel Defect Detection kaggle dataset, using a pre-downloaded copy of the dataset,
cd ~/R1.5/modelzoo/unet/tf
#rm -r model_dir_unet_base_severstal
cp /software/cerebras/dataset/severstal-steel-defect-detection/params_severstal_sharedds.yaml configs/params_severstal_sharedds.yaml
csrun_cpu python run.py --mode=train --compile_only --params configs/params_severstal_sharedds.yaml --model_dir model_dir_unet_base_severstal --cs_ip $CS_IP
csrun_wse python run.py --mode=train --params configs/params_severstal_sharedds.yaml --model_dir model_dir_unet_base_severstal --max_steps 2000 --cs_ip $CS_IP
Bert
An implementation of this: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
This BERT-large msl128 example uses a single sample dataset for both training and evaluation. See the README.md in the source directory for details on how to build a dataset from text input.
cd ~/R1.5/modelzoo/transformers/tf/bert
cp /software/cerebras/dataset/bert_large/params_bert_large_msl128_sampleds.yaml configs/params_bert_large_msl128_sampleds.yaml
#rm -r model_dir_bert_large_msl128
csrun_cpu python run.py --mode=train --compile_only --params configs/params_bert_large_msl128_sampleds.yaml --model_dir model_dir_bert_large_msl128 --cs_ip $CS_IP
csrun_wse python run.py --mode=train --params configs/params_bert_large_msl128_sampleds.yaml --model_dir model_dir_bert_large_msl128 --cs_ip $CS_IP
BraggNN
An implementation of this: BraggNN: fast X-ray Bragg peak analysis using deep
learning
The BraggNN model has two versions:
1) Convolution only - this version does not include the non-local attention block
2) Nonlocal - This version includes the nonlocal attention block as described in
https://arxiv.org/pdf/1711.07971.pdf
cd ~/R1.5/anl_shared/braggnn/tf
cp /software/cerebras/dataset/BraggN/params_bragg_nonlocal_sampleds.yaml configs/params_bragg_nonlocal_sampleds.yaml
#rm -r model_dir_braggnn
csrun_cpu python run.py -p configs/params_bragg_nonlocal_sampleds.yaml --model_dir model_dir_braggnn --mode train --compile_only --multireplica --cs_ip $CS_IP
csrun_wse python run.py -p configs/params_bragg_nonlocal_sampleds.yaml --model_dir model_dir_braggnn --mode train --multireplica --cs_ip $CS_IP