
Performance Analysis of GPU-accelerated
Applications with HPCToolkit

John Mellor-Crummey
Rice University

ALCF Hands-on HPC Workshop

Slides available in ALCF-Workshops Slack

ALCF Hands-on HPC Workshop

Plan for This Session

• Prepare for hands-on
• Introduce HPCToolkit tools and workflow

• Measurement (hpcrun)
• Post-mortem analysis tools (hpcstruct, hpcprof)
• Graphical user interface (hpcviewer)

• Illustrate hpctoolkit’s use with some case studies
• Working with hands-on examples

• Exploring pre-collected performance databases
• Full contact

scripted measurement, analysis, visualization of examples

ALCF Hands-on HPC Workshop
2

ALCF Hands-on HPC Workshop

Prepare to Explore Performance Data on your Laptop

• Download and install hpcviewer

• See https://hpctoolkit.org/download.html

!Select the right one for your laptop: MacOS (Apple Silicon, Intel),
Windows, Linux

!If you don’t have Java JDK 17 or 21, you can install one easily from
Adoptium (https://adoptium.net)

!It’s a one-click install. Install Java JDK before running hpcviewer

• User manual for hpcviewer

https://hpctoolkit.gitlab.io/hpctoolkit/users/hpcviewer/hpcviewer.html

3

https://hpctoolkit.org/download.html
https://adoptium.net
https://hpctoolkit.gitlab.io/hpctoolkit/users/hpcviewer/hpcviewer.html

ALCF Hands-on HPC Workshop 4

Acquire a Copy of HPCToolkit Hands-on Examples for Aurora

Starting from scratch

git clone https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop.git

Updating your existing directory

cd ALCF_Hands_on_HPC_Workshop
git pull

Today’s examples

cd ALCF_Hands_on_HPC_Workshop/tools/hpctoolkit

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop.git

ALCF Hands-on HPC Workshop 5

Acquire a Compute Node to use Interatively

Getting a compute node

cd ALCF_Hands_on_HPC_Workshop/tools/hpctoolkit
source sourceme-get-compute-node.sh

Configuring a compute node’s environment for hands-on examples

cd ALCF_Hands_on_HPC_Workshop/tools/hpctoolkit
source sourceme-on-compute-node.sh

ALCF Hands-on HPC Workshop

Plan for This Session

• Prepare for hands-on
• Introduce HPCToolkit tools and workflow

• Measurement (hpcrun)
• Post-mortem analysis tools (hpcstruct, hpcprof)
• Graphical user interface (hpcviewer)

• Illustrate hpctoolkit’s use with some case studies
• Working with hands-on examples

• Exploring pre-collected performance databases
• Full contact

scripted measurement, analysis, visualization of examples

ALCF Hands-on HPC Workshop
6

ALCF Hands-on HPC Workshop 7

Linux Foundation’s HPCToolkit Performance Tools

• Collect profiles and traces of unmodified parallel CPU and GPU-accelerated applications
• Understand where an application spends its time and why

!call path profiles associate metrics with application source code contexts
! analyze instruction-level performance within GPU kernels and attribute it to your source code

!hierarchical traces to understand execution dynamics
• Parallel programming models

!across nodes: MPI, SHMEM, UPC++, "
!within nodes: OpenMP, Kokkos, RAJA, HIP, DPC++, Sycl, CUDA, OpenACC, "

• Languages
!C, C++, Fortran, Python, "

• Hardware
!CPU cores and GPUs within a node

!CPU: x86_64, Power, ARM
!GPU: NVIDIA, AMD, Intel

ALCF Hands-on HPC Workshop

Why HPCToolkit?

• Measure and analyze performance of CPU and GPU-accelerated applications
• Easy: profile unmodified application binaries
• Fast: low-overhead measurement
• Informative: understand where an application spends its time and why

!call path profiles associate metrics with application source code contexts
!optional hierarchical traces to understand execution dynamics

• Broad audience
!application developers
!framework developers
!runtime and tool developers

• Unlike vendor tools, it works with a wide range of CPUs and GPUs

8

ALCF Hands-on HPC Workshop

How does HPCToolkit Differ from Vendor Tools?
• NVIDIA NSight Systems

!tracing of CPU and GPU streams
!analyze traces when you open them with the GUI

! long running traces are huge and thus extremely slow to analyze, limiting scalability
!designed for measurement and analysis within a node

• NVIDIA NSight Compute
!detailed measurement of kernels with counters and execution replay
!very slow measurement
!flat display of measurements within GPU kernels

• Intel VTune: designed for analysis of performance on a single node
• AMD Omnitrace: designed for analysis of performance on a single node

• HPCToolkit
!more scalable tracing than vendor tools

! measure exascale executions across many nodes and GPUs
! GUI can render trace data measured in TB

!scalable, parallel post-mortem analysis vs. non-scalable in-GUI analysis
!detailed reconstruction of estimates for calling context profiles within GPU kernels

9

ALCF Hands-on HPC Workshop

HPCToolkit’s Workflow for GPU-accelerated Applications

10

ALCF Hands-on HPC Workshop

HPCToolkit’s Workflow for GPU-accelerated Applications

!"#$ &'%
• ()*+,# "-." /01$23#,* ,#/0,4 32)# 1.$$2)5*
• -0*" /01$23#,' -g
•)6//' -lineinfo

11

ALCF Hands-on HPC Workshop

HPCToolkit’s Workflow for GPU-accelerated Applications

!"#$ 7'%
• !"#$%& /033#/"* /.33 $."- $,0823#* 9.)4

0$"20).33:; ",./#*< 08 #6#)"* 08 2)"#,#*"%

12

ALCF Hands-on HPC Workshop

Measurement of CPU and GPU-accelerated Applications

• Sampling using Linux timers and hardware counter overflows on the CPU
• Callbacks when GPU operations are launched
• Event stream or callbacks for GPU operation completion
• PC Samples: AMD, NVIDIA, Intel
• Binary instrumentation of GPU kernels on Intel GPUs for fine-grain measurement

13

ALCF Hands-on HPC Workshop

Call Stack Unwinding to Attribute Costs in Context

Call path sample

instruction pointer

return address

return address

return address

Calling context tree

• Unwind when timer or hardware counter overflows
!measurement overhead proportional to sampling frequency rather than call frequency

• Unwind to capture context for events such as GPU kernel launches

14

ALCF Hands-on HPC Workshop 15

hpcrun: Measure CPU and/or GPU activity

• GPU profiling
!hpcrun -e gpu=xxx <app> ….

• GPU PC sampling
!hpcrun -e gpu=yyy,pc <app>

• CPU and GPU Tracing (in addition to profiling)
!hpcrun -e CPUTIME -e gpu=xxx -tt <app>

• Use hpcrun with MPI on Polaris or Aurora
!mpiexec -n <ranks> … hpcrun -e gpu=xxx <app>

xxx ! {cuda,rocm,opencl,level0}
yyy ! {cuda,rocm,level0}

15

Note:
 Directions here apply to HPCToolkit 2025.1.0
 Prior versions used
 nvidia instead of cuda
 amd instead of rocm

ALCF Hands-on HPC Workshop

HPCToolkit’s Workflow for GPU-accelerated Applications

!"#$ ='%
• !"#()$%#) ,#/06#,* $,05,.1 *",+/"+,#

.>0+" 32)#*; 300$*; .)4 2)32)#4 8+)/"20)*

16

ALCF Hands-on HPC Workshop 17

hpcstruct: Analyze CPU and GPU Binaries Using Multiple Threads

• Usage
hpcstruct [--gpucfg yes] <measurement-directory>

• What it does
• Recover program structure information

• Files, functions, inlined templates or functions, loops, source lines
• In parallel, analyze all CPU and GPU binaries that were measured by HPCToolkit

!typically analyze large application binaries with 16 threads
!typically analyze multiple small application binaries concurrently with 2 threads each

• Cache binary analysis results for reuse when analyzing other executions

NOTE: --gpucfg yes needed for analysis of PC samples on NVIDIA and AMD GPUs

17

ALCF Hands-on HPC Workshop

HPCToolkit’s Workflow for GPU-accelerated Applications
!"#$?'%
• !"#"$*+,!"#"$*+-."/ /01>2)#*

$,0823#* 8,01 1+3"2$3# "-,#.4* .)4
/0,,#3."# 1#",2/* "0 *"."2/ @ 4:).12/
$,05,.1 *",+/"+,#

18

ALCF Hands-on HPC Workshop 19

hpcprof/hpcprof-mpi: Associate Measurements with Program Structure

• Analyze data from modest executions with multithreading (moderate scale)
hpcprof <measurement-directory>

• Analyze data from large executions with distributed-memory parallelism + multithreading (large scale)
mpiexec -n ${NODES} --ppn 1 —depth=128 \
 hpcprof-mpi <measurement-directory>

19

ALCF Hands-on HPC Workshop

HPCToolkit’s Workflow for GPU-accelerated Applications
!"#$?'%
• !"#0/121$ - 2)"#,./"26#3: #A$30,#

$,0823# .)4 ",./#* 80, BCDE.//#3#,."#4
.$$32/."20)*

20

ALCF Hands-on HPC Workshop
21

Code-centric Analysis with hpcviewer

• Profiling compresses out the temporal dimension
!Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
!N times per second, take a call path sample of each thread
!Organize the samples for each thread along a time line
!View how the execution evolves left to right
!What do we view? assign each procedure a color; view a depth slice of an execution

• function calls in full context
• inlined procedures
• inlined templates
• outlined OpenMP loops
• loops

source pane

navigation pane metric pane

view control

metric display

ALCF Hands-on HPC Workshop

Understanding Temporal Behavior

• Profiling compresses out the temporal dimension
!Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
!N times per second, take a call path sample of each thread
!Organize the samples for each thread along a time line
!View how the execution evolves left to right
!What do we view? assign each procedure a color; view a depth slice of an execution

Time

Processes

Call
stack

22

M
PI

 ra
nk

s,
O

pe
nM

P
Th

re
ad

s,
 G

PU
 s

tr
ea

m
s

Time

The color at a particular point in a
timeline indicates the CPU procedure
or GPU kernel active at that time at
the selected call stack depth

Depth view showing the history of calling contexts for the thread/GPU stream with the cursor

Call stack pane
shows full calling
context for the
cursor

Minimap indicates part of
execution trace shownA multi-level call stack based view of execution over time

Understanding hpcviewer’s trace view

23

ALCF Hands-on HPC Workshop

Plan for This Session

• Prepare for hands-on
• Introduce HPCToolkit tools and workflow

• Measurement (hpcrun)
• Post-mortem analysis tools (hpcstruct, hpcprof)
• Graphical user interface (hpcviewer)

• Illustrate hpctoolkit’s use with some case studies
• Working with hands-on examples

• Exploring pre-collected performance databases
• Full contact

scripted measurement, analysis, visualization of examples

ALCF Hands-on HPC Workshop
24

ALCF Hands-on HPC Workshop 25

Case Studies

• ExaWind (Nalu-Wind + AMRWind) - Wind turbine and wind farm simulation
• PeleLMeX - Adaptive mesh hydrodynamics code for low mach number reacting flows
• GAMESS (OpenMP) -
• Quicksilver (CUDA) -
• LAMMPS (Kokkos) at exascale

25

ALCF Hands-on HPC Workshop 26

ExaWind: Modeling Turbine Wake Formation

Figure credit: Jon Rood, NREL

ALCF Hands-on HPC Workshop

ExaWind: Wakes from Three Turbines over Time

Figure credit: Jon Rood, NREL
27

ALCF Hands-on HPC Workshop

ExaWind: Visualization of a Wind Farm Simulation

Figure credit: Jon Rood, NREL
28

ALCF Hands-on HPC Workshop 29

ExaWind: Execution Traces on Frontier Collected with HPCToolkit

Traces on roughly 64K MPI ranks + 8K GPUs for ~17minutes
Before: MPI waiting (bad), shown in red After: MPI overhead negligible*

*replaced non-blocking send/recv with ialltoallvFigure credits: Jon Rood, NREL
29

ALCF Hands-on HPC Workshop

ExaWind Testimonials for HPCToolkit

I just wanted to mention we’ve been using HPCToolkit a lot for our ExaWind application on
Frontier, which is a hugely complicated code, and your profiler is one of the only ones we’ve found
that really lets us easily instrument and then browse what our application is doing at runtime
including GPUs. As an example, during a recent hackathon we had, we improved our large scale
performance by 24x by understanding our code better with HPCToolkit and running it on 1000s of
nodes while profiling. We also recently improved upon this by 10% for our total runtime.

- Jon Rood NREL (5/31/2024)

One big thing for us is that we can’t overstate how complicated ExaWind is in general, and how
complicated it is to build, so finding out that HPCToolkit could easily profile our entire application
without a ton of instrumentation during the build process, and be able to profile it on a huge
amount of Frontier with line numbers and visualizing the trace was really amazing to us.

- Jon Rood NREL (6/3/2024)

30

Figure credit: PeleLMEX Team, NREL Hackathon, February 2025

ALCF Hands-on HPC Workshop

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

32

ALCF Hands-on HPC Workshop

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

33

ALCF Hands-on HPC Workshop

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

34

ALCF Hands-on HPC Workshop

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

35

ALCF Hands-on HPC Workshop

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

36

ALCF Hands-on HPC Workshop

LAMMPS on Frontier: 8K nodes, 64K MPI ranks + 64K GPU tiles

Kernel duration of microseconds

37

ALCF Hands-on HPC Workshop 38

Case Study: GAMESS

• General Atomic and Molecular Electronic Structure System (GAMESS)
!general ab initio quantum chemistry package

• Calculates the energies, structures, and properties of a wide range of chemical systems

• Experiments
• GPU-accelerated nodes at a prior Perlmutter hackathon

• Single node with 4 GPUs
• Five nodes with 20 GPUs

Perlmutter node at a glance
AMD Milan CPU
4 NVIDIA A100 GPUs
256 GB memory

38

ALCF Hands-on HPC Workshop 39

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

GAMESS original All CPU threads and GPU streams 39

ALCF Hands-on HPC Workshop 40

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
!Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
!N times per second, take a call path sample of each thread
!Organize the samples for each thread along a time line
!View how the execution evolves left to right
!What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original All CPU threads and GPU streams

Select Filter->Filter Execution Contexts

40

ALCF Hands-on HPC Workshop 41

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
!Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
!N times per second, take a call path sample of each thread
!Organize the samples for each thread along a time line
!View how the execution evolves left to right
!What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original All GPU streams, whole executionGAMESS original All GPU streams; whole execution 41

ALCF Hands-on HPC Workshop 42

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
!Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
!N times per second, take a call path sample of each thread
!Organize the samples for each thread along a time line
!View how the execution evolves left to right
!What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original GPU streams: 1 iteration

GPU load imbalance due to triangular iteration spaces

42

ALCF Hands-on HPC Workshop

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

GAMESS original
43

ALCF Hands-on HPC Workshop

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

CPU Threads and GPU Streams
44

ALCF Hands-on HPC Workshop

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
!Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
!N times per second, take a call path sample of each thread
!Organize the samples for each thread along a time line
!View how the execution evolves left to right
!What do we view? assign each procedure a color; view a depth slice of an execution

45

ALCF Hands-on HPC Workshop

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

GAMESS improved with better manual distribution of work in input
46

ALCF Hands-on HPC Workshop

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

GAMESS improved adding Rank 0 Thread 0 to GPU streams 47

ALCF Hands-on HPC Workshop

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
!Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
!N times per second, take a call path sample of each thread
!Organize the samples for each thread along a time line
!View how the execution evolves left to right
!What do we view? assign each procedure a color; view a depth slice of an execution

1 CPU Stream, 2 GPU Streams: 6 Iterations 48

ALCF Hands-on HPC Workshop

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
!Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
!N times per second, take a call path sample of each thread
!Organize the samples for each thread along a time line
!View how the execution evolves left to right
!What do we view? assign each procedure a color; view a depth slice of an execution

49

ALCF Hands-on HPC Workshop

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
!Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
!N times per second, take a call path sample of each thread
!Organize the samples for each thread along a time line
!View how the execution evolves left to right
!What do we view? assign each procedure a color; view a depth slice of an execution

50

ALCF Hands-on HPC Workshop

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
!Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
!N times per second, take a call path sample of each thread
!Organize the samples for each thread along a time line
!View how the execution evolves left to right
!What do we view? assign each procedure a color; view a depth slice of an execution

51

ALCF Hands-on HPC Workshop 52

Case Study: Quicksilver

• Proxy application that represents some elements of LLNL’s Mercury code
• Solves a simplified dynamic Monte Carlo particle transport problem

• Attempts to replicate memory access patterns, communication patterns, and
branching or divergence of Mercury for problems using multigroup cross sections

• Parallelization: MPI, OpenMP, and CUDA
• Performance Issues

• load imbalance (for canned example)
• latency bound table look-ups
• a highly branchy/divergent code path
• poor vectorization potential

52

ALCF Hands-on HPC Workshop

Quicksilver: Detailed analysis within a Kernel using PC Sampling

53

ALCF Hands-on HPC Workshop 54

Quicksilver: Detailed analysis within a Kernel using PC Sampling

54

ALCF Hands-on HPC Workshop

Plan for This Session

• Prepare for hands-on
• Introduce HPCToolkit tools and workflow

• Measurement (hpcrun)
• Post-mortem analysis tools (hpcstruct, hpcprof)
• Graphical user interface (hpcviewer)

• Illustrate hpctoolkit’s use with some case studies
• Working with hands-on examples

• Exploring pre-collected performance databases
• Full contact

scripted measurement, analysis, visualization of examples

ALCF Hands-on HPC Workshop
55

ALCF Hands-on HPC Workshop

HPCToolkit Resources

• Documentation
!User manual for HPCToolkit: https://hpctoolkit.gitlab.io/hpctoolkit
!Cheat sheet: https://gitlab.com/hpctoolkit/hpctoolkit/-/wikis/HPCToolkit-cheat-sheet
!User manual for hpcviewer: https://hpctoolkit.gitlab.io/hpctoolkit/users/hpcviewer/hpcviewer.html
!Tutorial videos

! http://hpctoolkit.org/training.html
! recorded demo of GPU analysis of Quicksilver: https://youtu.be/vixa3hGDuGg
! recorded tutorial presentation including demo with GPU analysis of GAMESS: https://vimeo.com/781264043

• Software
!Download hpcviewer GUI binaries for your laptop, desktop, cluster, or supercomputer

! OS: Linux, Windows, MacOS
! Processors: x86_64, aarch64, ppc64le
! http://hpctoolkit.org/download.html

!Install HPCToolkit on your Linux desktop, cluster, or supercomputer using Spack
! http://hpctoolkit.org/software.html

56

https://hpctoolkit.gitlab.io/hpctoolkit
https://gitlab.com/hpctoolkit/hpctoolkit/-/wikis/HPCToolkit-cheat-sheet
https://hpctoolkit.gitlab.io/hpctoolkit/users/hpcviewer/hpcviewer.html
http://hpctoolkit.org/training.html
https://youtu.be/vixa3hGDuGg
https://vimeo.com/781264043
http://hpctoolkit.org/download.html
http://hpctoolkit.org/software.html

ALCF Hands-on HPC Workshop

Hands-on Options

• Pre-collected databases to explore
• gain experience using hpctoolkit’s hpcviewer graphical user interface to

analyze performance data
• Hands-on examples

• scripts to build, run, and view several examples for the full experience
• hpcrun: measure an application as it executes
• hpcstruct: recover program structure information for mapping

measurements to source code
• hpcprof: combine measurements with program structure information
• hpcviewer: explore profiles and traces

57

ALCF Hands-on HPC Workshop

Prepare to Explore Performance Data on your Laptop

• Download and install hpcviewer

• See https://hpctoolkit.org/download.html

!Select the right one for your laptop: MacOS (Apple Silicon, Intel),
Windows, Linux

!If you don’t have Java JDK 17 or 21, you can install one easily from
Adoptium (https://adoptium.net)

!It’s a one-click install. Install Java JDK before running hpcviewer

• User manual for hpcviewer

https://hpctoolkit.gitlab.io/hpctoolkit/users/hpcviewer/hpcviewer.html

58

REVIEW

https://hpctoolkit.org/download.html
https://adoptium.net
https://hpctoolkit.gitlab.io/hpctoolkit/users/hpcviewer/hpcviewer.html

ALCF Hands-on HPC Workshop 59

Acquire a Copy of HPCToolkit Hands-on Examples for Aurora

Starting from scratch

git clone https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop.git

Updating your existing directory

cd ALCF_Hands_on_HPC_Workshop
git pull

Today’s examples

cd ALCF_Hands_on_HPC_Workshop/tools/hpctoolkit

REVIEW

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop.git

ALCF Hands-on HPC Workshop 60

Acquire a Compute Node to use Interactively

Getting a compute node

cd ALCF_Hands_on_HPC_Workshop/tools/hpctoolkit
source sourceme-get-compute-node.sh

Configuring a compute node’s environment for hands-on examples

cd ALCF_Hands_on_HPC_Workshop/tools/hpctoolkit
source sourceme-on-compute-node.sh

REVIEW

ALCF Hands-on HPC Workshop

Available Performance Databases

See /flare/alcf_training/hpctoolkit-examples/databases
• quicksilver: Monte Carlo particle transport proxy application (C++ + CUDA)

• hpctoolkit-qs-gpu-cuda.d - profile and trace on 4 CPUs + 4 GPUs
• hpctoolkit-qs-gpu-cuda-pc.d - instruction-level measurements within kernels using PC sampling

• pelelmex: Adaptive mesh hydrodynamics simulation code for low Mach number reacting flows (C++ + AMReX)
• pelelmex.db - a large trace with load imbalance from 2025 NERSC hackathon run on 16 CPUs + 16 GPU

• gamess: General Atomic and Molecular Electronic Structure System (Fortran + OpenMP)
• 1.singlegroup-unbalanced/hpctoolkit-gamess-1n-chol-noDS.d
• 2.singlegroup-balanced/hpctoolkit-gamess-1n-chol-fix_load_balance_noDS.d/
• 3.multigroup-unbalanced-mtarbr/hpctoolkit-gamess-5n.d/
• 4.multigroup-balanced/hpctoolkit-gamess-5n-manualbalance.d/
• 5.multigroup-unbalanced-pc/hpctoolkit-gamess-5n-pc.d/
• 6.scale/hpctoolkit-gamess-22n-test.d/

• qmcpack - CPU and GPU simulations
• minitest (OpenMP TARGET; SYCL: Profiling+tracing, PC sampling, Binary instrumentation)

61

ALCF Hands-on HPC Workshop

Viewing Performance Data

• Copy a performance database directory to your laptop and open it locally

• Open a performance database on a remote system

Note: using a HPCViewer with a remote system presumes that
hpcserver has already been installed on the remote system

—hpcserver has been installed on Aurora

—you can download and install hpcserver on your local cluster as well
(ask in Slack for directions)

62

ALCF Hands-on HPC Workshop

Configuring Hpcviewer Remote Access

• Run hpcviewer

• From the file menu, select “Open remote database”

• Fill in the hostname/IP address: aurora.alcf.anl.gov

• Fill in your username on Aurora

• Fill in the remote installation directory for hpcviewer’s server:

 /soft/perftools/hpctoolkit/hpcserver

• Select the authentication method: “Use password”

• Click “OK”

• Authenticate using your token as you normally do

• Navigate to a database with the file chooser to

 /flare/ATPESC2025/EXAMPLES/track6-tools/hpctoolkit/data

63

http://polaris.alcf.anl.gov

ALCF Hands-on HPC Workshop 64

Opening a Remote Database

64

ALCF Hands-on HPC Workshop 65

Configuring for remote access to Aurora using hpcserver

Check the
option to use

a password so
you can use
MobilePass

65

ALCF Hands-on HPC Workshop 66

First View of Aurora: Your Home Directory

66

ALCF Hands-on HPC Workshop 67

Navigate to Example Databases

67

ALCF Hands-on HPC Workshop 68

Navigate to Example Databases

Once you have
accessed some
directories, clicking
this icon will offer
you selections from
places that you’ve
been

68

ALCF Hands-on HPC Workshop 69

Select a Quicksilver Database with Traces

69

ALCF Hands-on HPC Workshop 70

After Selecting quicksilver-trace.d

70

ALCF Hands-on HPC Workshop 71

Inspecting Pre-collected Quicksilver Data

ALCF Hands-on HPC Workshop 72

Select the Tab “Trace: qs”

72

ALCF Hands-on HPC Workshop 73

Use the Filter to “Uncheck all” and Check “GPU” streams

73

ALCF Hands-on HPC Workshop 74

Zoom in on GPU Work to See Load Imbalance Across the Four GPUs

74

ALCF Hands-on HPC Workshop

Analyzing Quicksilver Traces

Using a measurement database with profiles and traces
• Select the Trace tab “Trace: qs”
• Identifying the traces

• Select a pixel on a trace line
• Look at legend on the top of the display, which reports the location of the “cross hair”
• Is this a CPU or GPU trace line?
• Repeat this a few times to identify what each of the trace lines represents

• Notice that each time you select a colored pixel on a trace line, you will be shown the function
call stack in the rightmost pane

• At the top of the pane is a “depth” indicator, that indicates what level in the call stack you are
viewing. The selected level will also be highlighted

• You can change the depth of your view by using the depth up/down, typing a depth, or simply
selecting a frame in the call stack at the desired depth

• You can select above the call stack frame to show the call stacks at the deepest depth
• If a sample doesn’t have an entry at the selected depth, its deepest frame will be shown

75

ALCF Hands-on HPC Workshop

Analyzing Quicksilver Traces

Using a measurement database with profiles and traces
• Zoom in on a region in a trace by selecting it in the trace display

• Use the back button to undo a zoom

• Use the control buttons at the top of the trace pane to
• expand or contract the pane
• move left, right, up, or down

• Keep an eye on the minimap in the lower right corner of the display to know what
part of the trace you are viewing

• Use the home button to reset the trace view to show the whole trace

76

ALCF Hands-on HPC Workshop

Analyzing Quicksilver Traces

Using a measurement database with profiles and traces
• Select the Trace tab “Trace: qs”
• Configure filtering

• Use the Filter menu to select Filter Execution Contexts
• In the filtering menu, select "Uncheck all"
• Now, in the empty box preceded by "Filter:", type "GPU" and then click "Check all”
• Select "OK".
• Now, the Trace View will show only trace lines for the GPUs.

• Inspect the trace data
• Is the work load balanced across the GPUs? How can you tell?
• Bring up the filter menu again. Select "Uncheck all". Type in "RANK 3" in the Filter box. Select thread

0 and the GPU context. Select “OK”.
• Move the call stack to depth 2

• What CPU function is Rank 3 thread 0 executing when the GPU is idle?
• Does this suggest any optimization opportunities?

77

ALCF Hands-on HPC Workshop

Analyzing the Quicksilver Summary Profile

Using a measurement database with profiles and traces

• Select the Profile Tab “Profile: qs”
• Use the column selector to deselect and hide the two REALTIME columns
• Select the GPU OPS column, which represents time spent in all GPU operations
• Select the button to show the “hot path” according to the selected column

• the hot path of parent will continue into a child as long as the child accounts for
50% or more of the parent’s cost

• The hot path will select “CycleTrackingKernel” — a GPU kernel that consumes 100%
of the GPU cost in this profile

• Use the button to graph “GPU OPS (I)” — inclusive GPU operations across the
profiles
• Are the GPU operations balanced or not across the execution contexts (ranks)?

78

ALCF Hands-on HPC Workshop

Analyzing the Quicksilver Summary Profile

• You will notice that for quicksilver, HPCToolkit doesn’t report any data copies between
the host and device

• The quicksilver code uses “unified memory” so that all of the data movement occurs
between CPU and GPU using page faults rather than explicit copies

• Today’s GPU hardware doesn’t support attribution of page faults to individual
instructions

• We could profile them (and do on AMD GPUs in a forthcoming release), but
the GPUs lack support to attribute them to the code that triggered the faults

79

ALCF Hands-on HPC Workshop 80

The Profile View in the other “PC Sampling” Database

80

ALCF Hands-on HPC Workshop

Analyzing Quicksilver PC Samples

Using a measurement database with traces that was collected *with* PC sampling enabled
Using the default top-down view of the profile

• Select the column “GINS (I)” to focus on the measurement of inclusive GPU Instructions
• Select use the flame button to look at where the instructions are executed
• In the call stack revealed, you will <gpu kernel> placeholder that separates CPU activity (above) from GPU kernel

activity (below)
• Below the <gpu kernel> placeholder you will see the function calls, inlined functions, loops and statements in

HPCToolkit’s reconstruction of calling contexts within the CycleTrackingKernel
• Using the bottom-up view of the profile

• Select the bottom-up tab of above the control pane
• Select the GINS STL_ANY (E) column, which will sort the functions by the exclusive GPU instruction stalls within that

function
• Scroll right to see which of the types of contributing types of stalls accounts for most of the STL_ANY amount
• Select the function that has the most exclusive stalls
• Select the the hot path to see where this function is called from.

• Where do the calls to the costly function come from?
• Does there appear to be an opportunity to reduce the number of calls to this function?

81

ALCF Hands-on HPC Workshop 82

Exercise the whole workflow:
Measurement, Post-mortem analysis, Interactive

exploration

ALCF Hands-on HPC Workshop

Hands-on Tutorial Examples on Aurora - 2

 hpcstruct - hpctoolkit’s multithreaded binary analysis tool
 qmcpack - a quantum monte-carlo materials simulation code from
 the exascale computing project. A big, pre-built code
 that offloads to the GPU using OpenMP
 minitest.omp - a simple MPI + OpenMP offloading code
 minitest.sycl - a simple MPI + SYCL offloading code
 minitest.sycl.gtpin - use Intel’s GTPin binary instrumentation
 tool to collect dynamic instruction counts for GPU
 instructions and map them back to source code
 minitest.sycl.pc - use hardware support to sample GPU instructions during
 execution. Map samples and stall reasons back to the source code.

83

ALCF Hands-on HPC Workshop

Hands-on Tutorial Examples on Aurora - 1

Go to an example directory, e.g. MINITEST/minitest.sycl

1. make run # use hpcrun to measure, hpsctruct for binary
 analysis, hpcprof to integrate

2. (a) make view # launch hpcviewer on Aurora to examine the
 resulting database using X11
 (b) see the next slide for how to view performance data
 directly on your laptop

84

ALCF Hands-on HPC Workshop 85

Some hpcviewer tips

ALCF Hands-on HPC Workshop

Information for Using Hpcviewer

• Filtering GPU traces
• Can use the filter menu to select what execution traces you want to see

• cpu only, gpu, a mix
• type a string or a regular expression in the chooser select or unselect the new set
• only traces that exceed a minimum number of samples

• Filtering GPU calling context tree nodes to hide clutter
• hide individual CCT nodes: e.g. lines that have no source code mapping library@0x0f450
• hide subtrees: MPI implementation, implementation of CUDA primitives

• When inspecting GPU activity, be aware that hpcviewer has two modes
• expose GPU traces or not

• means: when displaying GPU trace lines, don’t just show GPU activity if the time in the middle of a pixel is in a
GPU operation. instead, show the first (if any) GPU operation between the time in the middle of the pixel and the
middle of the next pixel

• why? GPU activity is so short, it may be hard to find if we don’t “expose” where it is
• downside: makes the GPU appear more active than it is

• you can correct hpcviewer’s trace-pane statistics by turning off the “Expose GPU traces” mode
• mode can be selected from <File>:<Preferences>:<Traces>

86

ALCF Hands-on HPC Workshop

Filtering Tips to Hide Unwanted Implementation Details

• Filter “descendants-only” of CCT nodes with names *MPI* to hide the details of
MPI implementation in profiles and traces

• Filter internal details of RAJA and SYCL templates to suppress unwanted detail
using a “self-only” filter

87

ALCF Hands-on HPC Workshop 88

Troubleshooting tips

ALCF Hands-on HPC Workshop

On Linux, hpcviewer crashes at startup!

State saved by different versions of hpcviewer is unfortunately incompatible on Linux.
Namely, state saved by hpcviewer/2025.1 and hpcviewer/2025.2 is incompatible.

Typically, removing hpcviewer’s saved state, as shown below

 rm -rf $HOME/.hpctoolkit/hpcviewer

will fix the problem and allow you to launch the version of hpcviewer you are trying to use.

Note: when running hpcviewer from Aurora, you must be logged in using “ssh -X” and
have a value for the environment variable DISPLAY that indicates a valid X11 display.

89

ALCF Hands-on HPC Workshop

Why can’t I see Source Code in hpcviewer?

To relate performance measurements in detail to your application source code,
your code must be compiled with a “-g” option in addition to your preferred
optimization flags. Otherwise, the compiler doesn’t record the information that
tools need to map performance to anything finer grain than procedures

• For instance, if you are building with cmake, you will want to build
RelWithDebInfo rather than Release for detailed correlation with source code

90

ALCF Hands-on HPC Workshop

I got the following WARNING from hpcprof on Aurora

WARNING: Trace for a thread is unexpectedly extremely unordered, falling back to an in-memory sort.

 This may indicate an issue during measurement, and WILL significantly increase memory usage!

 Affected thread: NODE(BOTH){1930040613, 0} RANK(SINGLE){3} GPUCONTEXT(SINGLE){0}
GPUSTREAM(SINGLE){0}

It appears that Level Zero time stamps wrap rather than counting monotonically. This can make your traces look
surprising where GPU activity is rendered a few minutes behind the rest of application activity.

For short executions, you can rerun your application and the problem may disappear.

(Next slide compares a disordered trace and a correct trace)

91

ALCF Hands-on HPC Workshop

Disordered vs. Correct Trace for qmcpack

Disordered (some or all GPU timestamps shifted left) Proper (correct) trace alignment between CPU & GPU

92

ALCF Hands-on HPC Workshop 94

Plan B Hands-on Examples for Aurora

Starting from scratch

git clone https://github.com/jmellorcrummey/ALCF_Hands_on_HPC_Workshop.git

Updating your existing directory

cd ALCF_Hands_on_HPC_Workshop
git pull

Today’s examples

cd ALCF_Hands_on_HPC_Workshop/tools/hpctoolkit

https://github.com/jmellorcrummey/ALCF_Hands_on_HPC_Workshop.git

